Euklidinė struktūra

Norint naudoti euklidinę geometriją, reikia turėti atstumų (nuotolių) ir krypčių (kampų) tarp vektorių sąvokas. Natūralus būdas suskaičiuoti šiuos dydžius yra apibrėžti skaliarinę sandaugą erdvėje Rn. Skaliarinė dviejų vektorių x ir y sandauga yra apibrėžiama:

\mathbf{x}\cdot\mathbf{y} = \sum_{i=1}^n x_iy_i = x_1y_1+x_2y_2+\cdots+x_ny_n.

Jos rezultatas yra visada realusis skaičius. Dar daugiau, x skaliarinė sandauga su juo pačiu visada neneigiamas skaičius. Tai leidžia apibrėžti vektoriaus x ilgį kaip

\|\mathbf{x}\| = \sqrt{\mathbf{x}\cdot\mathbf{x}} = \sqrt{\sum_{i=1}^{n}(x_i)^2}.

Ši funkcija tenkina matematinės normos sąvoką ir vadinama Rn Euklidine norma. Vidinis kampas θ tarp x ir y gali būti parašytas kaip

\theta = \cos^{-1}\left(\frac{\mathbf{x}\cdot\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}\right)

kur cos−1 yra arkkosinuso funkcija.

Pagaliau mes galime panaudoti normos sąvoką apibrėždami atstumą arba metriką erdvėje Rn:

d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{i=1}^n (x_i -  y_i)^2}.

Šis atstumas arba metrika yra vadinamas euklidiniu atstumu, kuris reiškia atstumą tarp dviejų  vektorių (rodyklių) galų. Iš esmės tai yra gerai visiems žinoma Pitagoro teorema. Realių koordinačių erdvė su šia metrika yra vadinama Euklidine erdve ir dažnai naudojamas žymėjimas En. Euklidinė erdvė taip pat reiškia, kad ji yra Hilberto erdvė ir metrinė erdvė.

Sukimai Euklidinėje erdvėje apibrėžiami kaip tiesinės transformacijos T, išsaugančios kampus ir atstumus:

T\mathbf{x} \cdot T\mathbf{y} = \mathbf{x} \cdot \mathbf{y},
|T\mathbf{x}| = |\mathbf{x}|.

T iš esmės yra ortogonalios matricos.

Reklama

Žymos:

4 atsakymai to “Euklidinė struktūra”

  1. justep Says:

    Praverčianti teorija kiekvienam. 🙂

  2. dovilemalijonyte Says:

    Labai įdomu. 🙂

  3. rozkova Says:

    Geras darbas 🙂

  4. ievav Says:

    Patinka man 🙂

Parašykite komentarą

Įveskite savo duomenis žemiau arba prisijunkite per socialinį tinklą:

WordPress.com Logo

Jūs komentuojate naudodamiesi savo WordPress.com paskyra. Atsijungti /  Keisti )

Google+ photo

Jūs komentuojate naudodamiesi savo Google+ paskyra. Atsijungti /  Keisti )

Twitter picture

Jūs komentuojate naudodamiesi savo Twitter paskyra. Atsijungti /  Keisti )

Facebook photo

Jūs komentuojate naudodamiesi savo Facebook paskyra. Atsijungti /  Keisti )

Connecting to %s


%d bloggers like this: